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Model of Strength Degradation from Hertzian Contact Damage in

Tough Ceramics

Brian R. Lawn,” Seung Kun Lee,*T Irene M. Peterson,** and Sataporn Wuttiphan

Materials Science and Engineering Laboratory, National Institute of Standards and Technology,

A model of strength degradation for ceramics subject to
damage from contact with hard spheres is developed. Pri-
mary attention is focused on tough ceramics with hetero-
geneous microstructures which deform in a quasi-plastic
mode. Brief consideration is also given to ideally brittle
ceramics which form classical ring cracks, as a comparative
baseline. Strength vs indentation load data from two mi-
crostructurally controlled ceramics, silicon nitride and a
micaceous glass-ceramic, illustrate distinctive strength deg-
radation responses: in fine-grain ) form, ideally brittle
failure from ring cracks, with abrupt strength loss at the
critical load for crack initiation followed by a slow falloff at
increasing load; in coarse-grain C) form, failure from
within the quasi-plastic zone, with continuous strength loss
beyond a load well above that for the onset of yield, and
with even slower falloff. Failure in the latter materials oc-
curs from contact-induced microdamage flaws with two
essential elements: an inner closed shear crack with fric-
tional sliding faces (“shear fault”), which forms within the
confining compression—shear contact field; an outer annu-
lar, kinked crack that initiates at the fault edges (“wing
crack™), and that extends in tensile local mode. The critical
fault—crack is modeled as a virtual crack, with the residual
field from the inner fault stabilizing the net driving force on
the outer wing crack during ensuing tensile loading. Finite
element modeling is used to evaluate the nonlinear elastic—
plastic contact fields, and to provide a relationship between
residual shear fault stress and contact load. The model ac-
counts for the essential qualitative and quantitative fea-
tures of the strength—load data, with provision for cata-
strophic degradation at high fault densities and extreme
loads by microcrack coalescence. The model also contains
the ingredients for analysis of contact fatigue, via attrition
of the frictional tractions on the residual fault.

I. Introduction

Q)NTACTS between curved surfaces, exemplified in Hertzian
ests with spherical indenters, constitute an important form
of loading in many ceramic-based structures, including ceramic
bearings? ceramic engine componentsand biochemical
structures (ceramic dental restoratiddsp prostheses). Above
some critical load, depending on the radius of curvature of the
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contacting surfaces, the ceramic structures sustain irreversible
damage that can compromise their useful lifetime. The nature
of this contact damage changes fundamentally as the ceramic
becomes coarser and more heterogeneous, and consequently
tougher, undergoing a ‘“brittle—to—quasi-plastic” transi-
tion:>-1%in fine-grain, homogeneous microstructures classical
ring or cone cracks form in the region of weak tension outside
the contact; in coarse-grain, heterogeneous microstructures dif-
fuse microdamage forms in the region of strong compression—
shear beneath the contact. In the latter case the strong stress
gradients in the compression field ensure localization of the
microdamage within a well-defined near-field quasi-plastic
zone. At the microstructural level, the damage consists of
shear-activated microcracRg;8:10-11yjith two basic elements:
“closed” sliding facets, “shear faults” or mode Il cracks with
internal frictional resistance, which form at weak grain or in-
terphase boundariés; “extensile” microcracks, mode |
“wing cracks,” which initiate at some kink angle from the
fault edges:>-17 At extreme high loads or number of repeat
contacts neighboring microcracks may coalesce, resulting ulti-
mately in material disintegration within the damage z&meth
strong implications in wear and machiniig.

An issue of importance in the context of design is the effect
that such brittle—to—quasi-plastic transitions have on the
strength of ceramics after contact damage has been sustained.
In ideally brittle homogeneous materials abrupt strength losses
occur beyond the critical load for cone crack initiation, with
continued but slower losses at increasingly higher loads. The
strength degradation in this class of structure has been well
analyzed in terms of conventional fracture mechafic3*No
such analysis exists for tough heterogeneous ceramics—in
these materials strength losses are not apparent until the load is
well beyond the “yield” point for the onset of quasi-plasticity,
and are thereafter continuous and even more gradiyet?
Generally, the natural strength of heterogeneous ceramics is
lower than that of homogeneous ceramics, despite any in-
creased toughness, but may remain higher after indentation—
the degradation is considerably less, i.e., the material is more
damage tolerant. This relatively benign response in heteroge-
neous structures is consistent with the notion that failure oc-
curs from a single shear fault within the damage zone, at least
up to the point of coalescence, where strength losses begin to
acceleraté.

In this paper we construct a simple model for strength deg-
radation from Hertzian contacts in tough, heterogeneous ce-
ramics. For the sake of completeness, we first summarize ex-
isting models for failure from ring cracks in homogeneous
structures®-22 with a minor modification to provide an im-
proved prediction. For the heterogeneous structures, failure is
taken to occur from an individual wing crack at the edge of a
critical individual fault within the contact microdamage zone.
A model is thereby developed for the degraded strength as a
function of contact load. The model takes into account the
contribution of residual shear stresses at the fault interface
(determined by the frictional tractions) to the driving force on
the ensuing extensile wing crack. In both damage modes we
treat the critical microcracks as center-loaded penny cracks,
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with the actual cracks growing as annular rings about virtual  Strengthss are plotted as a function of contact loRdor
centers. Experimental data from two well-characterized ce- SizN,3! (WC sphere radius = 2.38 mm) and MG&® (r =
ramic systems, silicon nitridé and a micaceous glass- 3.18 mm)in Figs. 5 and 6. The data points are experimental test
ceramic?® are used as a basis for testing the validity of the results: solid symbols represent failures from contact sites;
model. These material systems may usefully be prepared withopen symbols represent failures from extraneous flaws. Shaded
effectively homogeneous and heterogeneous microstructuresboxes at the left axes represent natural strengths from breaks on
Stress analysis of the contact stress field using a finite elementunindented specimens, means and standard deviations for a

algorithn?® is an important adjunct to the modeling in the
heterogeneous structures. The model contains provision for
crack coalescence between neighboring faults at very high con-
tact loads (or number of cycles), with accelerated degradation;
and for progressive fatigue or wear, by attrition of internal
friction at the sliding shear fault interface.

Il. Experimental Background

In this section we summarize essential Hertzian contact
test results from other studies on two ceramic materials which
show definitive transitions in contact response from brittle
to quasi-plastic with coarsening microstructure. The materials
are silicon nitride (SjiN,)?4 and a machinable micaceous
glass-ceramic (MGC) supplied by Corning (Corning Co.,
NY),?527-30the first relatively hard and the second relatively
soft. These two materials are readily transformed from “fine”
(F) to “coarse” (C) states by simple heat treatments, yielding
the coarsened and elongated rod;Xg) and platelet (MGC)
microstructures indicated in Table I.

Hertzian contact tests conducted on thgNgiand MGC

minimum of 10 tests. Vertical dashed lines indicate critical
loads at the onset of fully penetrant cone crackifg, and of
yield, Py, measured independently by detecting the first indi-
cations of indentation damage on polished surf&t&8Also
indicated, for the coarse structures (Figs. 5(b) and 6(b)), is the
load at which strength degradation first occurs, Note that in
F-SigN, (Fig. 5(a)) Pc << Py (Py > 5000 N, off scale), con-
firming a highly brittle material, whereas FFMGC (Fig. 6(a))
Py < Pg, consistent with a softer material. In bd&materials,
however, the strength loss is abrupPat P, consistent with
failure from dominant ring cracks (Figs. 3(a) and 4(a))—the
preceding yield inF-MCG is not sufficient to deter brittle
fracture. Thereafter, the strength falls off slowly with increas-
ing load, as the ring cracks increase in i€ In both C
structuresP, << P (P off scale), but strength loss does not
occur untilPy is well aboveP,,, even though failure originates
from dominant quasi-plastic zones (Figs. 3(b) and 4(b)). Again,
the subsequent degradation is gradual, notwithstanding an
ever-expanding damage zone at increasing |64683.

The solid curves in Figs. 5 and 6 are theoretical fits to the
data, to be described later in Section V.

materials in air, using tungsten carbide spheres, produce the

damage patterns shown in Figs. 1 and 2. The micrographs are |ll.

half-surface and section views from “bonded-interface” ce-
ramographic specimeri€?In the F microstructures (Figs. 1(a)

Fine Microstructures: Failure from Cone Cracks

In this section we briefly review the mechanics of failure

and 2(a)), characteristic cone cracks are formed outside thefrom ring cracks in brittle, fine-grain ceramics. We draw on

contact. A slight depression within the surface ring crack trace
is observed inF-MGC (Fig. 2(a)), indicating limited quasi-
plasticity even in the fine-grain state of this relatively soft
materials® In the C microstructures (Figs. 1(b) and 2(b)), well-

earlier treatment$?->2adding a minor modification to allow for
the fact that the cracks in Figs. 1(a) and 2(a) are not full, but
truncated, cones.

Above a critical contact loa® = P. a ring crack pops in

developed quasi-plastic damage zones are formed beneath thabruptly from a surface fla®?->3The crack geometry is shown

contact. Cone cracking is suppressed, although vestigial ring
crack traces are observed on the ha@&i;N, surfaces (Fig.
1(b)). Scanning electron microscopy indicates that the damage
zones consist of shear-activated microfailures at or near the
interfaces between the rods in thgl$j'° or platelets in the
MGC”2° and the second phase, i.e., “shear faults,” with at-
tendant microcracks extending into the matrix at the higher
contact loads.

These two distinct modes of contact damage lead to funda-
mentally different strength properties. Surface micrographs of
failures from Hertzian indentation sites in;8j, and MGC bars
broken in four-point flexure are shown in Figs. 3 and 4. In the
F microstructures (Figs. 3(a) and 4(a)) the break initiates from
the base of the ring cracks, indicating a brittle failure. In e
microstructures (Figs. 3(b) and 4(b)) the break originates closer

to the contact center, traversing the contact peripheries almost

orthogonally, indicating failure from the subsurface quasi-
plasticity zone.

Table I.

schematically in Fig. 7. The dimensianof the actual ring
crack is related to the dimensi@hof a “virtual” cone with its
tip located above the contact surface:
C = c+ Ry/cosay 1)

whereR, is the surface ring radius and, the angle between
cone crack and specimen surface. Our aim is to derive an
expression for the strength of a material containing such a
crack.

The stress-intensity factor for this virtual cone crack system
can be well approximated by a simple relation for pennylike
cracks?434 For materials governed by a single-valued tough-
nesskK,c = T,, as befits fine-grain structures, this relation is

)

with x a crack geometry coefficiedg:>> The parametex can

K = xPIC32 = T,

Microstructures of Ceramics Used in This Study

Material Grain structure Concn (vol%) Morphology Grain sipan

F-SigN,  «-SigN, 75 Equiaxed 0.4
B-SisN, 15 Elongate—rods 15%x0.4
Oxynitride glass 10 Bonding phase

C-Si;N,  B-SigN, 90 Elongate—rods 9x15
Oxynitride glass 10 Bonding phase

F-MGC Mica 55 Platelets 0.3x1.0
Fluorosilicate glass 45 Bonding phase

C-MGC  Mica 55 Platelets 1.2x8
Fluorosilicate glass 45 Bonding phase
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(a) (b}

Fig. 1. Half-surface and side views of Hertzian contact damage in silicon nitrides: (a) finefegi®igN,, (b) coarse-graitc-Si;N,. Indentations
with WC sphere radius = 1.98 mm at loacd® = 4000 N. Note transition from fracture-dominated to plasticity-dominated damage. Nomarski
optical micrographs, bonded-interface specimens. (From Ref. 24.)

be calibrated from measurements of equilibrium cone crack specified anglex, is predeterminable from a detailed fracture
lengths at specified load§ = (xP/Tg)?=. mechanics analysis of crack reinitiation from the cone base in
In the absence of any significant residual stresses associatedensile field$® (Appendix A).
with the indentation damage zone, failure occurs unstably from  The earlier analysé%23 neglect the truncation of the cone
a dominant flaw according to the Griffith strength relation by treatingC andcin Eqg. (1) as identical, a condition that is not
op = To/WcY? @) well satisfied unlesg >> R,

with ¥ a geometry coefficient. AP < P, o is governed by
the size of preexisting natural flaws,= ¢;, and is equal to the
natural (pre-indentation) strengih,, independent oP. At P >

IV. Coarse Microstructures: Failure from Shear Faults

P, the strength is governed by the sizef the developed ring Now consider the case of tough, coarse-grain ceramics of
crack, determinable from Egs. (1) and (2). In this regignis primary interest here, where failure occurs from the microdam-
dependent orP, but the dependence is sloviP(/2 in the age zone beneath the spherical indenter. Suppose that this mi-

asymptotic limitC >> R,/cosay), and is only slowly dependent  crodamage zone consists of a distribution of shear faults, well
on r, through R,. The coefficient¥ (o) for a ring crack of spaced so that overlap with neighbors does not occur at any

Fig. 2. Half-surface and side views of Hertzian contact damage in machinable glass-ceramics: (a) fireM@{, (b) coarse-graiC-MGC.
Indentations with WC sphere radius= 3.18 mm at load® = 1000 N. Note transition from fracture-dominated to plasticity-dominated damage
pattern. Nomarski optical micrographs, bonded-interface specimens. (From Ref. 25.)
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(b)

300 pum

Fig. 3. Surface views of contact failure sites in silicon nitride specimenstE{8};N,, (b) C-Si;N,. Indentations with WC sphermre= 2.38 mm
at loadP = 4000 N. Nomarski optical micrographs, four-point bend-strength specimens, tension axis horizontal.

stage during the loading history. (We will consider the case tive valueT, in the short-crack region of any toughness curve.
where the fault density is high enough to cause overlap later in As we shall see (Section V(2)), the strength relation for coarse
Section VI). Failure can then be assumed to occur from a single microstructures can be reduced to normalized form in IBad
critical fault within the damage zone, as depicted in Fig. 8. The eliminating any explicit dependence dfy. Because of the
critical fault is taken to be located below the surface along the relative complexity of the wing-crack geometry, we shall en-
contact axis, oriented at 45° to this axis, where the shear stresounter several configurational parameters en route to this
is maximum?® When this maximum shear stress exceeds some strength relation. The normalization procedure will eliminate
threshold level, the fault surfaces slide over each other, con-the need to predetermine these parameters, reducing the data
centrating the stresses at the fault edges. The ensuing extensilétting to adjustment of just one unknown load quantity.
wing crack is considered to extend at 45° to the fault plane, ) o
normal to the specimen surface, so that it experiences maxi-(1) Residual Shear Stress at Sliding Fault
mum tension in the subsequent flexure field. This configuration  Consider the response of a shear fault within a small volume
idealizes the optimum geometry somewhat, especially in re- element in the damage field, such that the stresses within the
gard to the angle of the wing craék® but captures the es-  element are uniform and compressive. Solutions for uniform
sence of the problem with minimum geometrical complication. stress states can be used to provide constitutive stress—strain
In the following analysis we shall assume that the crack relations for analysis of the much more complex nonuniform,
lengths at failure are sufficiently small that toughness can again nonlinear and triaxial contact field$,using numerical (FEM)
be taken as single-valued, corresponding to some representaprocedureg®

(a) (b}

Fig. 4. Surface views of contact failure sites in glass-ceramic specimenB:N&}C, (b) C-MGC. Indentations with WC sphere= 3.18 mm
at loadP = 1000 N. Nomarski optical micrographs, four-point bend-strength specimens, tension axis horizontal.
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Fig. 5. Strength degradation of Hertzian-indented silicon nitrides as
function of contact load: (afF-SizN,, failure from ring cracks; (b)
C-SigN,, failure from shear faults. Indentations with WC spheres

2.38 mm. Four-point bend-strength specimens,r@ m4 mm x 25
mm, with polished surfaces and chamfered and polished edges. Test
in fast loading (<10 ms) in inert environment (silicone oil) to avoid
slow crack growth effects. Data points are individual experimental
measurements: closed symbols represent failures from indentation ori-
gins, open symbols from other origins. Shaded box at left axis repre-

sents strengths of polished, unindented specimens. Vertical dashecﬁ

lines indicate threshold load¥- for cracking,P,, for yield, andP, for
first degradation. Solid curves are theoretical fits.

The critical fault in the contact field at peak lo&dn Fig. 8
is subject to a net shear stress

Tx = Tp — T¢

Tp ~ (Tc + MO_*) (4)
wherer is the resolved shear stress on the fault planerairsd

a friction resistance stress, withy a “cohesion” stressy. a
friction coefficient, ando. the resolved compression stress
normal to the fault plan&!3¢(The sign ofr; in Eq. (4) reverses
on unloading.) The condition. > 0, T, > 1 corresponds to
forward sliding (yield). Of the two friction termsy. is of
greater importance in accounting for the existence of a well-
defined yield stres¥? pertinent to the quasi-plastic materials of
interest here. In this work we will find it mathematically ex-
pedient to proceed in the approximatign= 0, so that Eq. (4)
reduces tor. = Tp — ..

Equation (4) implies the existence of a residual shear stress
on the fault at completion of contatt.If 7. = 7., no reverse
sliding occurs during unloading (low), and the net stress
attained at peak loading persists after contact. If reverse sliding
occurs (highP), 7. reduces tor, at full unloading. For sim-
plicity, we will assume the former condition, and justify this
assumption later (Section VII).

Inclusion of the frictional terms. andp. in Eq. (4) contains
provision for fatigue, by attrition of the; term and consequent
enhancement of with progressive sliding”

(2) Fracture Mechanics

Model of Strength Degradation from Hertzian Contact Damage in Tough Ceramics

1513

400 T ] I ]
! ! (a) E-MGC
300 ! ; .
200 ITY Ifc .
5 3 % o
s 10 u R
iy ! !
© I 1
o 0 R | | l
h
5
5 400 7T 1 T T |
) -
£ P 1 r=3.18mm (b) C-MGC
5 3001 1
m ] ]
Py Pp
200 (5 ! i
100 % é ]
0 : : | | | [
0 500 1000 1500 2000 2500

Indentation load, P (N)

Fig. 6. Strength degradation of Hertzian-indented glass-ceramics as
a function of contact load: (df-MGC, failure from ring cracks; (b)
C-MGC, failure from shear faults. Indentations with WC sphere;

3.18 mm. Four-point bend-strength specimensn®xb mm x 25 mm

Swith polished surfaces and chamfered and polished edges. Tests in fast

loading (<10 ms) in inert environment (silicone oil) to avoid slow
crack growth effects. Data points are experimental measurements, er-
ror bars indicating standard deviations for three to five specimens:
losed symbols represent failures from indentation origins, open sym-
ols from other origins. Shaded box at left axis represents strengths of
polished, unindented specimens. Vertical dashed lines indicate thresh-
old loadsP. for cracking,P, for yield, andP, for first degradation.
Solid curves are theoretical fits.

parallel to the major compression axis!” 38 Treatments by
Horii and Nemat-Nass&t and othet®17 smooth out compli-
cations from the kink geometry by replacing the fault with a
concentrated line force acting at the edge of the fault, and
treating the ensuing wing crack as a reinitiation problem. Horii
and Nemat-Nass#t introduce an “effective crack length”
correction term to allow for the nonzero fault size. Another
approach considers the shear fault and extensile crack as part of

r

Oy /\ y

As indicated, the net shear generates stress concentrations &tig. 7. Model for ring crack formed at contact lo&] The system is

the fault ends in Fig. 8, initiating wing cracks approximately

treated as a penny crack of virtual radids= ¢ + R,/cos o,
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(a) Shear-fault/wing-crack T
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i

Fig. 8. Model for extension of wing crack from shear fault. (a) Coordinate system. Composite crack is treated as pennylike with virtual radius
C = c++l (y = 0.27),c annular wing crack radius arldault radius. (b) Two-step indentation—strength sequence: compression field at contact
load P forms fault with residual shear stress subsequent application of tensile strestakes crack to failure.

an integral penny-crack system, with superposable stress-at equilibrium, withT, the toughness of the material through
intensity factors from each component of resolved stress actingwhich the wing crack propagates (e.g., grain boundary in poly-
on the fault and crack segmerits3® We adopt a hybrid ap-  crystal, matrix phase in ceramic with platelet inclusions). Sub-
proach here, in an effort to provide a simple solution without stituting Eq. (6) and defining the dimensionless quantities
compromising essential features of the strength response.

Accordingly, we consider the composite shear-fault/wing- €=C/l (9a)
crack system in Fig. 8 as a planar penny crack with center

— 1/2
Ipading _from the residual stresses on the shear fault, of effec- ¥ = ol /To (%)
tive radius T. = XAV T, (9c)
C =c+yl (5)

Equation (8) transposes to a normalized expression for
wherec is the annular wing crack width ardhe shear fault SF(6,T.):

radius, andy is a dimensionless geometry coefficient. In the 1o 2o

manner of Horii and Nemat-NassEryl may be viewed as a F=Le€")1-T./€77) (10)
correction term to allow for the contribution of the fault surface
to the effective length of the composite crack—those authors
determiney = 0.27. As we shall show, this term usefully
allows us to express the conditions for crack initiation and
propagation in a unified formulation. The net shear stress
over the fault area gives rise to an opening center f@yam

the unloaded crack

Q = A2, (6)

with \ a dimensionless coefficient. Again, Eq. (6) holds only if
T. = T, such that no reverse sliding occursrif> 7., so that
reverse sliding does occup, reduces td), = Al?7..12We will
confirm later that the latter state is not attained in the case
studies considered here (Section V).

The persistence of the ford@ imposes a residual mode |
stress-intensity factor on the crack in Fig. 8, somewhat akin to
the intrinsic “microstructural driving force” envisaged by
Cook et al#*° The residuaK-field may be written in the same
equilibrium form as Eq. (2):

Plots of ¥(‘6) for specified values ofi. are shown in Fig. 9.
These functions have maxima at

Stress, §

Ke = xQ/IC¥2 =T, (7
(3) Strength
Now suppose that the residual fault/crack system is sub- Crack size, C

jected to an applied tensile stress Fig. 8. The net stress-
intensity factor on the composite crack is made up of mode | Fig. 9. Normalized plot of applied tensile stre§sas function of
contributionsKg from the residual forc& (Eq. (7)) andK, crack lengtt6 for extension of wing crack, at specified residual shear
from the applied tension: stressed .. Vertical dashed line & = v = 0.27 denotes virtual edge
of shear fault from which wing cracks extend. In rarn@e > 0.035
K = Kg+ Ky = xQIC32 + ¥gC¥2 = T, (8) cracks extend stably to maximum in curve prior to failure.
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Gy = (49,)%3 (11a) because of the high degree of nonlinearity in the indentation
stress—strain responses. Accordingly, we are forced to resort to
P = 3/[44T )3 (11b) finite element modeling (FEM) of the contact stress fields to
- . . . determine this relation. Details of such modeling, using a criti-
Included in Fig. 9 is the vertical dashed liffe = vy = 0.27 cal shear stress condition for yield, have been described else-

representing: = 0 in Eq. (5), i.e,, the edge of the shear fault \ynere26 Computations have been carried out for the specific
from which the lengths of the wing cracks are measured. Note, C-Si;N,24 and C-MGC materials under consideration héPe.
however, thaté,, and ¥y, in Eq. (11) are independent of The FEM procedure begins with a predetermination of input

‘The curves in Fig. 9 show how the strength responses vary narameters for any given material, by independent measure-
with the level of residual shear stress on the fault. The  ment and by best-fitting indentation stress—strain cuéahe
maximum falls to the right of the dashed line, i€, > 0.27, maximum principal shear stress within the contact zone is then
corresponding td7. > 0.035 in Eq. (1&). Within this region  eyajyated from the algorithm at specified load intervals, giving
the crack grows stably with increasiig prior to failure, and e(P). In the spirit of our approximatiop = 0 in Eq. (4), we

the normalized strength is given directly B¢ = v in EQ.  mpay'then invoke the uniaxial yield stress relatior: 27, (Ref.
(11b). Note two distinct subregions, delineated by the condition 12)’tg evaluater.(P) = To(P) - Y/2.

¥ = 0at¢ = 0.27, corresponding t6. = 0.14 in Eq. (10):
“subthreshold activated,” within 0.035 g. < 0.14, where a ) )
wing crack initiates during tensile loading prior to failure; V. Theoretical Fits to Strength Data
“postthreshold activated,” within7. > 0.14, where a wing
crack initiates during the preceding contact cycle. There is a
region beyond the contact yield point at 02 < 0.035 (not
represented in Fig. 9) where failure is “spontaneous” from the
fault edge¢ = vy = 0.27 during stressing, with the strength
given by¥e = ¥(v,7.) in Eq. (10).

Accordingly, the strengtlrr = o, over the bulk of ther.
range beyond the contact yield point may be deconvolute

from Eqg. (1b) by inserting Egs. (8) and (<) to obtain
(1) Fine Microstructures—Failure from Ring Cracks

— 4 2, 1/3
or = EANTIHA) (12) For predictive evaluation of failure from ring cracks in the
This constitutes our basic strength relation for the data analysisF-Si;N, and F-MGC materials, the following parameters in
to follow (Section V). Egs. (1) to (3) are predetermined as follows: (i) cone angle
Equation (12) holds above a critical degradation residual in Eq. (1), from section micrographs (e.g., Figs. 1(a) and 2(a));
stressr. > 1, Where the wing crack constitutes the dominant (ii) surface ring crack radiu&, in Eqg. (1), from direct mea-

We now apply the above analyses to the strength degradation
data for SiN, in Fig. 5 and MGC in Fig. 6, for failure from
both ring cracks in th& materials and shear-fault/wing-cracks
in the C materials. Detailed descriptions of appropriate param-
eter calibrations of the materials, in conjunction with FEM
analyses, are available in separate stu#fi€8.Only a brief
d description of these calibrations is given here. Results are sum-
marized in Table II.

flaw in the strength specimen. At < 1, the strengtho is surements of surface traces at critical lé&d(noteR, does not
equal to the natural (unindented) strengthindependent of.. expand at higher load, even though the contact radius does, and

. . may even engulf the first, inner surface ring cracks and initiate
(4) Hertzian Field new, outer rings); (iii) toughnesk, in Eq. (3), from indepen-

Thus far we have considered the mechanics for a compositedent Vickers indentation tests; (iv) coefficiegtin Eq. (2),
shear-fault/wing-crack within a volume element in a uniform  from measurement of virtual cone sizes at different lo&{B)
stress field. This yields the relation in Eq. (12) for strength in (together withT,) (Appendix A); (v) coefficient¥ = W(cg) in
terms of the residual shear stress on the fafs.). Here we Eq. (3), from a theoretical evaluation of crack reinitiation
concern ourselves with the strength response in nonuniform within the tensile field at the cone ba8¢Appendix A).

Hertzian contact fields. Specifically, we seek a relation for the  The resulting calculated functions-(P) are included as the
strength as a function of contact loag(P). As indicated in solid curves foiF-Si;N, andF-MGC in Figs. 5(a) and 6(a). The
Fig. 8, failure is expected to occur from a critical fault located horizontal lines alP < P, in those figures correspond to the
beneath the contact along the symmetry axis, with the fault mean natural (unindented) strengthg for each material
plane oriented close to 45° to this axis, where the shear stressegTable Il). The curves a® > P, correspond to the cone crack
are greatest; and with the effective wing crack plane closely predictions from Egs. (1) to (3). The predicted curves account
orthogonal to the tensile stress We assume that the fault—  for the extent of the strength lossRit= P, and provide lower
crack system is sufficiently small relative to the scale of the pounds for the subsequent degradation at higher loads.
damage zone that the stress gradients over its diameter may be ] )

considered negligibly small. (2) Coarse Microstructures—Failure from Shear Faults

This leaves us to determine a connecting relatig¢R) for a The microscopic shear-fault/wing-cracks in 8€5i;N, and
given material system and sphere radius. An analytical expres-C-MGC materials are less accessible to direct measurement.
sion for this function is not feasible for quasi-plastic solids, Accordingly, calibration of Eq. (12) for strength evaluation in

Table 1l. Material Variables for Ceramics Used in This Study

Material F-SisN, C-SigN, F-MGC C-MGC
Natural strengthg, (MPa) 885 792 304 126
ToughnessT, (MPam™?) 3.9 0.9
Young's modulusE (GPa) 335 315 69 49
Poisson’s ratioy 0.27 0.29 0.25 0.25
Yield stress)Y = 21, (GPa) 7.3 0.9
Strain-hardening coefty 0.5 0.2
Ring crack radiusR, (im) 310 ¢ = 2.38 mm) 3601 = 3.18 mm)
Ring crack angleg, (deg) 19.0 185
Critical ring crack loadP- (N) 2100 700
Critical yield load,P,, (N) 1300 75
Degradation loadP (N) 2600 240
Cone crack coeffy 0.71 0.79

Cone crack coeffy 15.4 x 10° 16.0 x 103
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the coarse structures is conducted in a more empirical mannerwith Eq. (14), we obtain an explicit expression for the strength

using FEM to determine the dependencéP)?® and thus to
generate the full strength degradation functicutP).

To determiner.(P), we use an elastic—plastic constitutive
uniaxial stress—strain relation, in accordance with a critical
shear stress condition for yield, in the FEM algorithm (Appen-
dix B), with the following input parameters (Table II):
(i) elastic parameters, Young's moduldsand Poisson’s ratio
v, from sonic measurements; (ii) yield streésfrom measure-
ments ofP, = ma?p, = 1.1wa?Yin Figs. 5(b) and 6(b} (iii)
linear strain-hardening coefficieiat, which quantifies the de-
gree of quasi-plasticity, by best-fitting indentation stress—strain
curveg® (Appendix B).

Functionstp(P) obtained in this way folC-Si;N,3t and C-
MGC?5 are plotted in Fig. 10. The horizontal dashed lines at
T, = T, = Y/2 represent the onset of yield, corresponding to
7. = 0. The vertical dashed lines represent the ldads Pp
(Figs. 5(b) and 6(b)), from which we may directly evaluate the
residual shear stresses = 1, at which degradation first oc-
curs (Table 11). The functiong(P) is bounded by curves for
hypothetical extremes: fully elastiex(= 1), upper dashed
curves, calculated from the Hertzian elasticity equations; fully
plastic @ = 0), given by the horizontal dashed line through
T = T.. Note that the functions.(P) = 15(P) - 1. that derive
from the plots in Fig. 10 satisfy the conditian < . for zero
reverse sliding assumed in Section IV.

An empirical fit to the FEM-generated functions (Appendix
B) yields the approximate result

Tty = a[PIPy)Y3 - 1] (P>Py) (13)
Inserting the natural strength: = o, att. = 1 into Eq. (12)
yields

odoy = (Tplt)*

(14)

Identifying 7. = 7 with P = Pp in Eq. (13), and combining

6 T T T T

Fault shear stress, T, (GPa)

i r=3.18mm A

2

1
1.5
Indentation load, P (kN)

2.5

Fig. 10. FEM-generated maximum shear stregson faults within
Hertzian contact zone as function of contact I¢atbr coarse micro-
structures, for WC sphere radius specified: Gpi;N, and (b) C-
MGC. Critical loads for onset of yield® = P, and degradatior® =
Pp, indicated.

degradation:
or = odl(PE* - PYII(P¥2 - PYAIE (P> Py) (15)

The resultant strength—load functiong(P) for C-Si;N, and
C-MGC, using the measured valuesRyf andPp, are included

as the solid curves in Figs. 5(b) and 6(b). Again, the horizontal
lines atP < P, correspond to the mean natural strength$or
each material (Table Il). The fits account for the continuous,
ultraslow strength falloff.

VI. Microcrack Coalescence

So far we have assumed that failure occurs from a single
microcrack. What happens when the fault densltiyecomes
sufficiently large that coalescence with neighboring cracks
occurs before a potentially critical wing crack attains insta-
bility during the strength test? The prospect of coalescence
increases as the characteristic separation 1/2N*3 reduces
toward the crack diamete€ (Fig. 11), with attendant cata-
strophic falloff in strength. Such a catastrophic falloff is not in
evidence in Figs. 5 and 6, but has been observed in repeat
contact experiments?®

For any given residual shear stresgor contact loadP), the
condition for coalescence is that a stably extending crack
should intersect its neighbor before satisfying the instability
condition. Ignoring crack—crack interactions in the stress-
intensity factors, this condition is simply = €6,,, where% =
d/l (cf. Eq. (%)). With Eq. (11), this condition corresponds to
9 = (49.)%". The strength within this coalescence region is
then given by inserting = 9, ¥ = Y into Eq. (10):

Pe = UDYA(L - T3 (T. > D34) (16)

predicting a linear falloff with respect t&. in $(7.). To
highlight this falloff, we plot¥(7) in Fig. 11 in logarithmic
coordinates, for three selected value<iof

In principle, the falloff in Fig. 11 continues to tl€. axis, to
zero strength. In reality such degradation is usually limited,
because the microcracks usually only propagate to the bound-
ary of the damage zone (or perhaps a little beyond, in extreme
cases), producing strength levels more like those from fully
developed radical cracRe®> Nevertheless, such falloff spells
the beginning of the end for the useful lifetime of these mate-
rials, if not from strength degradation then by excessive mate-
rial removal.

VIl. Discussion

In this paper we have developed models for strength degra-
dation in Hertzian contacts: from ring cracks in firf€),( ho-
mogeneous structures (brittle response); and from microdam-
age cracks in coars€) heterogeneous structures (quasi-plastic
response). In both cases we have represented the cracks as
“virtual” pennies, to simplify and accommodate geometrical
complexities. Theoretical fracture mechanics then yields ap-
propriate strength—load functions-(P) in the degradation
region, and identifies controlling material variables. Silicon
nitride (SgN,) and micaceous glass-ceramic (MGC) micro-
structures (Table 1) afford illustrative case studies for data
analysis (Table II).

Essential features of the models for theand C structure
types are as follows:

(i) F structures. Failure occurs from truncated cone
cracks. The fracture mechanics relations Egs. (1) to (3) make
due allowance for the truncation (Fig. 7), specifically for the
location of the virtual tip above the indented surface, with
consequent improvement in data fitting relative to earlier mod-
els1® These equations account for the abrupt falloff in strength
at the critical contact load., and slow falloff thereafter at
P > P (Figs. 5(a) and 6(a)). From direct measurementBHf
surface ring crack radiuR, and crack anglex,, all of the
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(a) Coalescence (b) Catastrophic degradation
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Fault shear stress, 7,

Fig. 11. Coalescence of wing cracks: (a) coordinate system; (b) plot of normalized sti#pgth function of residual shear stre$s for wing
crack extension (solid curve), showing coalescence-associated falloff for specified values of microcrack separation D.

geometrical coefficients in Egs. (1) to (3) can be experimen-  The fault—crack model fo€ structures provides approximate
tally predetermined, conferring the model with a certain pre- bounding solutions for crack initiation and coalescence during
dictive capability. The fact that the data points at higher loads the initial contact cycle, as starting conditions for the strength
in Figs. 5(a) and (especially) 6(a) lie above the predicted curvestest. The critical condition. = T; for contact-induced wing
atP > P may be attributable to engulfment of the surface ring crack initiation isKkp = Toatc = 0 in Egs. (5) to (7), yielding
cracks by the ever-expanding contact circle, leading to arrest of

the inner ring cracks and the initiation of multiple goﬁés. T = (YAXN TN 17

(i) C structures. Failure occurs from individual shear- e 3 Hall-Petch relation in fault siz8 Note that incorpora-
fault/wing-cracks within the damage zone population (Fig. 8). tjon of the fault “correction” termy is paramount here—to
The model accounts for the relatively continuous falloff in ignore the fault is to imply spontaneous initiation (ig.= 0
strength aP, and even slower falloff (relative ®© structures) 7, = 0). The sizeC, of the resulting wing cracks beyond the

atP > Py, (Figs. 5(b) and 6(b)). At the same time, the model njtiation stress level is obtained from Egs. (6) and (7):
allows for catastrophic loss from crack coalescence at extreme

loads (or, potentially, numbers of cycles). Interesting inclu- Co = (XNI2/Ty)?? (T« > 1) (18)
sions in the formation are the residual fault driving foiQe . L .
(Egs. (7) and (8)) and the fault-length contributigrto the net corresponding to the appropriate intercept along¢haxis in

size of the virtual craclC in Eq. (5). The point forc ro- Fig. 9. The critical conditionr. = T, for contact-induced
vides a stabilizing influence 0?1 t(hg crackpgrowth pﬁ%rpto fail- coalescence (“disintegration”) at high fault densities (Fig. 10)
ure, with progressively enhanced extensiéf,) and dimin- is given by equating, = din Eq. (18), giving

ished strengthd,,) at increasing residual stress.(. This kind o = Ted3YNI2 (19)

of stabilization is common in indentation problef#s'3 How- . ©

ever, whiley modifies the actual crack length, it does not indicating upper practical limits to the concentration of shear
feature in Eq. (12), so the strength is insensitive to the value of faults (N = 1/8d®) and grain size I} in heterogeneous
this parameter. Parametric calibration of Eq. (15) involves microstructures.

measurement of the lod, at first yield, and of the loa@,, at In this paper we have presented data using a single sphere
first strength degradation belows,. Because of the empirical ~ radiusr for each material. How do the strength characteristics
nature of this latter adjustment, Eq. (15) is not amenable to in Figs. 5 and 6 depend on variationsrihindentation damage
priori predictions ofo(P). modes are renowned for their strong size efféttGenerally,

A key element of the study is the role of microstructure in as the indenter radius is reduced, fracture is progressively sup-
determining the fundamental mechanism of the strength deg-pressed relative to plasticity, enhancing any brittle—plastic tran-
radation, by controlling the degree of quasi-plasticity. In the sition#4—#¢With the ring crack mode, the main effect is felt in
materials chosen for examination h&ré° the brittle—plastic the critical load where the strength undergoes its abrupt de-
transition is effected primarily by grain coarsening and elon- cline, generally with a sphere size dependence somewhere be-
gation, with intrinsic provision for shear-activated faulting at tweenP¢ o« r and P « r2.32:3347A secondary effect is felt in
weak internal interfacesThe single material parameter that the ensuing degradation Bt> P, via some scaling of with
most compellingly quantifies this transition is the strain- the surface ring crack radiu], in Eq. (1). With the quasi-
hardening coefficientx (a measure of the density of active plasticity mode, the yield response in monolithic materials usu-
faults within the contact compression—shear 2énia the con- ally satisfies the requirements of geometrical similarity, ex-
stitutive stress—strain relation used in the FEM computations pressible asP, « r?, P, o« r241 with the associated shear
(Appendix B). The effect of reducing this parameter between stressesr. and T invariant. A more complete analysis of
the boundsx = 1 (full elasticity) andx = 0 (full plasticity) is sphere-size effects in the analysis of strength degradation of
to depress the.(P) curve (Fig. B2, Appendix B), rendering the  SizsN, will be given elsewheré?
ceramic structure less susceptible to abrupt strength losses as Some limitations in our model for quasi-plastic ceramics are
ring cracking is suppressed in favor of quasi-plastic deforma- acknowledged. In the fracture mechanics analysis we have as-

tion. For theC materials, inserting. = 15 atP = Pp into Eq. sumed an annular pennylike geometry for the wing crack, with
(13) yieldsPp/Py = [(TplaTy) + 1]3, so that reducingx in- c 32 falloff in Kgin Eq. (7); others have assumed a line-crack
creased;, (recall T is constant at fixedr, in Eq. (14)), shift- geometry with extension confined to the top and bottom ends

ing o(P) to higher loads in Eq. (15) and diminishing the deg- of the fault}3>-'7and withc 2 falloff. The latter dependence
radation further. would result in a faster strength falloff m-(P). Actual behav-
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ior probably lies somewhere between these two bounds. We 1200 T T T T T
have assumed that the fault undergoes no reverse sliding during
contact ¢. < T.), So that the net shear strason the shear fault F-MGC
at maximum load persists on unloading. If reverse sliding were
to occur ¢ > 1), thent. would relax back tor, at full un-
load!? And sincer,. is independent oP, the strength degra-
dation would saturate. However, the conditien> 7. is not
achieved in either material investigated here (Fig. 10). In deal-
ing with the friction stresa; in Eq. (1) we have expediently
omitted thew. term. The presence of this term would suppress
sliding somewhat during the expanding contact, i.e., lower
further complicating the..(P) relations derived from the FEM
computations. We have neglected any internal residual mis-
match stresses acting on the cracks. Such stresses, which can be
substantial in ceramics, would shift the strength curvgs.)

up (compression) or down (tension) in Fig. 10. We have taken 0 L L L

the toughness of our materials to be single-valued, on the basis 0 100 200 300
that the wing-crack extensions are only on the microscopic Load, P¥3 (N??)

scale, whereas in reality heterogeneous ceramics with coarse

structures exhibiR-curves. Also, crack—crack interactions in Fig. AL. Plots of C vs P23 for F-Si;N, (data from Ref. 24) and
the stress-intensity factor formulation of Section IV have been g \1G¢ (data from Ref. 25.)

ignored. Although these interactions are generally not substan-

tial until the crack separations are very sndlthey could be

significant in the coalescence condition in Section VI. Finally,

in determining the empirical relation Eq. (13) we have ignored 3
deformation of the spherical indenter, which occurs in tests on i
harder ceramics like §W,.242¢ All these limitations, taken
together with the empirical nature of our calibrations for e
materials in Section V, especially in relation to the function
7.(P), lend the model a somewhat phenomenological flavor. In
this context, absolute values for some of the calibrated param-
eters should not be taken too literally. At the same time, the
theoretical strength degradation function in Eqg. (15) is not
highly sensitive toP, and accounts for all the broader data
trends.

With this last qualification, the model is well placed for
extension to contact fatigu®.This is accommodated by attri-
tion of 7; in Eq. (1), specifically the friction parametets i
and/orp, leading to a progressive increaserin‘? An optimum g ]
condition for attrition would appear to be reverse sliding at the I
faults during unloading? i.e., 7. > 7.. In the present experi- 0 T 1 L | !
ments the progressive yield within the quasi-plastic damage 0 20° 40° 60°
zone limits the build up of. to levels well belowr, (Fig. 10).

Yet accelerated strength loss in repeat loading apparently does Cone crack angle, o,
occur in heterogeneous ceramics over the load range repre-

sented heré®>37 This raises the issue of stochastics: real ce- Fig. A2. Crack geometry coefficien¥ as a function of cone an-
ramics are inevitably characterized by a distribution in fault- 9le a, (generated from Ref. 19). Angles fé+-Si;N, and F-MGC
sizes, so the yield condition is subject to a statistical eleffient. indicated.

It needs only one particularly large fault to activate below the

nominal yield stress in order for degradation to occur. The

issue of fatigue in these quasi-plastic materials will be pursued APPENDIX B

elsewhere.

800 - .

[
400 o2 FSiN, |

Crack size, C (Lm)
T

Crack geometry coefficient, y

FEM Evaluation of Elastic—Plastic Contact Field
APPENDIX A
The starting points for finite element modeling (FEM) evalu-
) ations of the functiorr.(P) in Section V (2) are indentation
Evaluation of Cone Crack ParameterW stress—strain curves, which plot mean contact pregsy(a-
dentation stress) againafr (indentation strain). Such stress—
strain curves forC-Si;N,24 and C-MGC?2® are shown in Fig.
B1. Note that the curve foe-MGC is considerably lower and
flatter than that foIC-Si;N,, indicating a much softer material.
Models of frictional sliding at shear faults in applied uniform
compression fields, predict a linear strain-hardening relation
between uniaxial stress, and strains, 1226

Evaluations of the two geometrical coefficients in the ring-
crack formulation listed for the materials in Table Ilx in Eq.
(2) and¥ in Eq. (3), are made using data from separate studies.
Figure Al plotsC vs P?/3 from measured values @fP) in
conjunction with Eq. (1), foF-SigN,24 andF-MGC.25 Asymp-
totic data fits yield the values of = T,C%%/P (Eq. (2)) listed

in Table II.

Figure A2 is a plot of# as a function of cone angle, on = Y+a(eaE-Y) (oa>Y) (B-1)
which depends on Poisson’s rafid>® The functionW(ay) is
determined from an analogous functid(c,), with ¥ = with E Young’s modulus and yield stress, in accordance with

(Qm)2, generated from a detailed fracture mechanics analysis a critical shear stress criterion for slip. Equation (B-1) is used
of crack initiation at the cone base in an applied tensile field as a constitutive relation for the FEM analysis. The FEM al-
(tensile axis normal to cone axi¥).The values of¥’ are then gorithm assumes a frictionless contact between WC sphere and
determined at the measured crack anglgsn Table II. specimen surface, and contains provision for deformation of
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Fig. B1. Indentation stress—strain curves f6Si;N, (data from Ref.
24) and F-MGC (data from Ref. 25). Solid curves are FEM fits.
Dashed lines are bounds from Hertzian elasticity solutions.

2.0

Resolved shear stress, T, (GPa)

Indentation load, P (kN)

Fig. B2. Plots of functionrg(P) for C-MGC atr = 3.18 mm. Data
points generated from FEM algorithm, for selected hypothetical values
of strain-hardening coefficient. Solid curves are corresponding func-
tions from empirical relation Eq. (B-2).

the sphere (essential with harder materials likgN$)i.2¢ Input
elasticity parameters akeandv, plasticity parameter¥ anda.
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overestimates./t., so the strength degradation relation in Eqg.
(15) is conservative.

The resultingr.(P) functions forC-Si;N, andC-MGC using
actual calibrated values ef from Table Il are plotted as the
solid curves in Fig. 10.
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